Canonical decompositions of 3-connected graphs

Joint work with Johannes Carmesin
University of Birmingham

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.

Decomposing G along a k-separator:

Problem: Decompose k-con'd G along k-separators into pieces that are ($k+1$)-con'd or 'basic'.
$k=1:$

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.
$k=2$.

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.
$k=2$.

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.
$k=2$.

Two k-separators are nested if neither separates the other; otherwise they cross.

Two k-separators are nested if neither separates the other; otherwise they cross.

A k-separator is totally-nested if it is nested with every k-separator.

Two k-separators are nested if neither separates the other; otherwise they cross.

A k-separator is totally-nested if it is nested with every k-separator.

Theorem (Cunningham \& Edmonds 80)
Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_{2} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Theorem (Cunningham \& Edmonds 80)
Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_{2} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.
\downarrow
3-con'd, >4 vertices, every 3 -separator has form

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and $E(A \backslash B, B \backslash A)=\emptyset$
separator of $\{A, B\}: \quad A \cap B$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and

$$
\begin{aligned}
& E(A \backslash B, B \backslash A)=\emptyset \quad A \nsubseteq B \nsubseteq A \\
& (A \cap B) \cup E(A \backslash B, B \backslash A)
\end{aligned}
$$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and

$$
\begin{aligned}
& E(A \backslash B, B \backslash A)=\emptyset \quad A \nsubseteq B \nsubseteq A \\
& (A \cap B) \cup E(A \backslash B, B \backslash A)
\end{aligned}
$$

tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and

$$
\begin{aligned}
& E(A>B, B \backslash A)=\emptyset \quad A \nsubseteq B \nsubseteq A \\
& (A \cap B) \cup E(A \backslash B, B \backslash A)
\end{aligned}
$$

tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and $E(A \backslash B, B \backslash A)=\emptyset \quad A \nsubseteq B \nsubseteq A$
$(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and $E(A>B, B \backslash A)=\emptyset \quad A \nsubseteq B \nsubseteq A$
$(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$
$\{A, B\}$ and $\{C, D\}$ are nested if $A \subseteq C$ and $B \supseteq D$ after possibly switching A with B or C with D; otherwise they cross.
nested

crossing

totally-nested nontrivial tri-separations

totally-nested nontrivial tri-separations
none

totally-nested nontrivial tri-separations

none
totally-nested nontrivial tri-separations

none
totally-nested nontrivial tri-separations

none
totally-nested nontrivial tri-separations

none

totally-nested nontrivial tri-separations

none

Decomposing along a tri-separation

Main result (Carmesin \& K. 23)

Every 3-con'd G decomposes along its totally-nested nontrivial tri-separations into minors of G that are

- quasi 4 -con'd
- wheels
- thickened $K_{3, m}$

or $G=K_{3, m}(m \geqslant 0)$.

3
m

Application 1 (Carmesin \& K. 23)
Every vertex-transitive finite con'd G is either

- 4-con'd
- 3-con'd and 3-regular and every tri-sep'n has form

- K_{1}, \ldots, K_{4} or a cycle.

Application 2: Connectivity Augmentation to 4

Theorem (Carmesin \& Ramanujan 23+)
\exists FPT-algorithm with runtime $C(k) \cdot \operatorname{Poly}(|V(G)|)$ and Input: $\quad G r a p h ~ G, k \in \mathbb{N}$ and $F \subseteq E(\bar{G})$
Output: \quad No, or $\leqslant k$-sized $X \subseteq F$ such that $G+X$ is 4-con'd

Application 2: Connectivity Augmentation to 4

Theorem (Carmesin \& Ramanujan 23+)
\exists FPT-algorithm with runtime $C(k) \cdot \operatorname{Poly}(|V(G)|)$ and Input: $\quad G r a p h ~ G, k \in \mathbb{N}$ and $F \subseteq E(\bar{G})$
Output: \quad No, or $\leqslant k$-sized $X \subseteq F$ such that $G+X$ is 4-con'd

Open: Extend the main result to k-separations for $k \geqslant 4$.

Open: Tri-separations for matroids
$k=2: \quad \checkmark$ finite \quad Cunningham \& Edmonds 80
\checkmark infinite Aigner-Horev, Diestel \& Postle 16
$k=3: \quad$???
Related: Oxley, Semple \& Whittle 04

Tri-separation
Mixed-sep'n $\{A, B\}$ with \mid sep'r| $=3$ such that every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$.

Main result (Carmesin \& K. 23)
Every 3-con'd G decomposes along its totally-nested nontrivial tri-separations into minors of G that are quasi 4 -con'd, wheels, thickened $K_{3, m}$'s or $G=K_{3, m}(m \geqslant 0)$.

Open
Extend to k-separations for $k \geqslant 4$. Tri-separations for matroids.
arXiv: 2304.00945
Slides: web.mat.bham.ac.uk/J.Kurkofka/

Tri-separation
Mixed-sep'n $\{A, B\}$ with $\left|\operatorname{sep}^{\prime} r\right|=3$ such that every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$.

Main result (Carmesin \& K. 23)
Every 3-con'd G decomposes along its totally-nested nontrivial tri-separations into minors of G that are quasi 4 -con'd, wheels, thickened $K_{3, m}$'s or $G=K_{3, m}(m \geqslant 0)$.

Open
Extend to k-separations for $k \geqslant 4$. Tri-separations for matroids.
arXiv: 2304.00945
Slides: web.mat.bham.ac.uk/J.Kurkofka/

Thank you!

