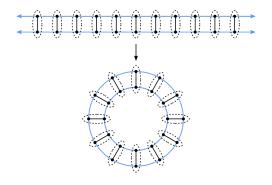
Towards a Stallings-type theorem for finite groups

Jan Kurkofka

TU Freiberg



Joint work with

Johannes Carmesin, George Kontogeorgiou and Will J. Turner

Theorem (Stallings).

TFAE for every group Γ with finite generating set S:

- Cay (Γ, S) has ≥ 2 ends;
- Γ decomposes as a non-trivial amalgamated free product or HNN-extension over a finite subgroup.

(This is independent of S.)

end of a graph: equivalence class of one-way infinite paths w.r.t. the relation 'not separable by finitely many vertices'

Open problem: Extend Stallings' theorem to finite groups.

Challenges:

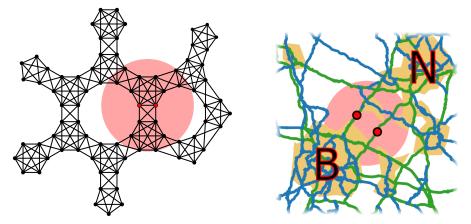
- 1. Ends have no finite counterparts
- 2. Key step of the proof fails for finite $\boldsymbol{\Gamma}$

X ⊆ V(G) is separator if G - X has ≥ 2 components
separation of G: pair (A, B) with A ∪ B = V(G) and A \ B ≠ Ø ≠ B \ A but without (A \ B)-(B \ A) edges
A ∩ B is the separator of (A, B)

- $\blacktriangleright (A,B) \leq (C,D) :\Leftrightarrow A \subseteq C \text{ and } B \supseteq D$
- (A, B) and (C, D) are *nested* if (A, B) ≤ (C, D) possibly after switching roles of A, B or of C, D; otherwise they *cross*
- a set of separations is *nested* if its elements are pairwise nested

Recent development in Graph Minor Theory:

local separators



Rough idea: vertex-sets that separate G locally in a ball of given radius, not necessarily G itself

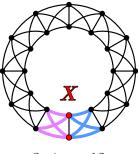
Given G, r > 0 and $X \subseteq V(G)$.

Two edges $e, f \in \partial X$ lie in the same r-local component at X if

- there are a cycle $O \subseteq G$ of length $\leq r$, and
- \blacktriangleright a subpath P of O that starts with e and ends with f,

such that P only meets X in its endvertices.

We allow P = O.



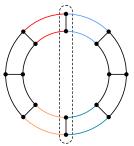
 $3 \leq r < 12$

Two vertices of X lie in the same r-local atom of X if

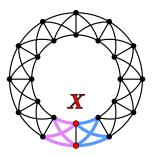
- ▶ they lie together on a cycle of length $\leq r$, or
- are joined by an edge.

Call X *r*-locally atomic, or *r*-tomic, if X consists of one *r*-tom.

Example of <u>not</u> *r*-tomic:



- X is an *r*-local separator if
 - there are least two r-local components at X, and
 - X is r-tomic.
- An *r*-local separation is a triple (E, X, F) where
 - ► X is an r-local separator, and
 - \blacktriangleright *E*, *F* bipartition ∂X while respecting *r*-local components.

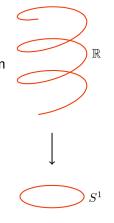


A *covering* of G is a surjective graph-homomorphism $p: C \to G$ such that for every vertex $v \in C$:

▶ p restricts to a bijection $\partial_C(v) \rightarrow \partial_G(p(v))$.

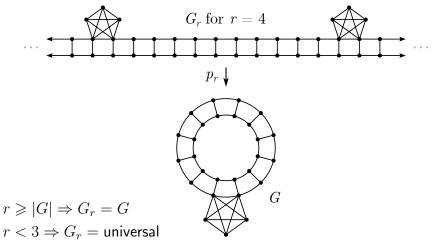
Example: universal coverings are trees.

The ball $B_G(v, r/2)$ of radius r/2 around $v \in V(G)$ consists of all vertices and edges that lie on closed walks of length $\leq r$ through v.



 $\forall G \text{ and } r > 0 \text{ there is a unique } r\text{-local covering } p_r \colon G_r \to G \text{ s.t.}$

- 1. p_r restricts to an isomorphism $B_{G_r}(v, r/2) \rightarrow B_G(p_r(v), r/2)$ for every $v \in V(G_r)$, and
- 2. p_r is 'nearest' to the universal covering with (1).

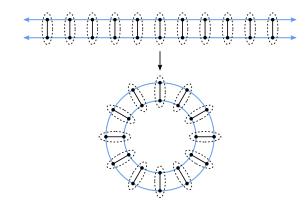


separations of $G_r \doteq$ lifts of r-local separations of G (roughly)

Two r-local separations of G are *nested* if all their lifts are nested.

Ideas Ochallenges for finite Γ :

- 1. Use ends of r-local covering of some $Cay(\Gamma, S)$.
- 2. Use Γ -orbit of suitable *r*-local separation in proof.



Main result (Carmesin, Kontogeorgiou, K., Turner '24)

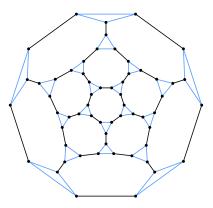
Let Γ be a finite group that is nilpotent of class $\leq n$. Let $r \ge \max\{4^{n+1}, 20\}$. Then TFAE:

- 1. The *r*-local covering of some Cayley graph G of Γ has ≥ 2 ends that are separated by ≤ 2 vertices.
- 2. G has an r-local separator of size ≤ 2 and $|\Gamma| > r$.
- 3. $\Gamma \cong C_i \times C_j$ for some i > r and $j \in \{1, 2\}$.

Questions:

- Why nilpotent?
- Why only (local) separators of size ≤ 2 ?

Why nilpotent?



(1) and (2) hold for r ≤ 9.
(3) cannot be amended (A₅ is simple).

Open problem (in reach): Extend main result to solvable groups.

Why only (local) separators of size ≤ 2 ? Heavily exploited in proof...

 $\Rightarrow \Gamma \cong C_i \times C_j$ for some i > r and $j \in \{1, 2\}$.

Proof. Say $G = Cay(\Gamma, S)$.

Case |X| = 1: We claim $S = \{s^{\pm 1}\}$ (so G is a cycle).

Suppose for a contradiction that $\{s^{\pm 1}\} \subsetneq S$.

It suffices to show that $B(\mathbb{I}, r/2) - \mathbb{I}$ is connected.

We show that every $g^{\pm 1} \neq h^{\pm 1} \in S$ lie in the same component.

$$\begin{split} & [g,h]_n = \mathbb{I} \Longrightarrow \text{ short closed walk} \Longrightarrow \text{ short cycle } O. \\ & ([g,h]_1 := gh^{-1}g^{-1}h \text{ and } [g,h]_n := [g,[g,h]_{n-1}]_1 \text{ after reduction}) \end{split}$$

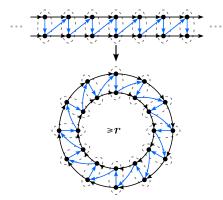
At least three of the words $gh, g^{-1}h, gh^{-1}, hg$ occur on O (we may use both directions of O to find words).

G has r-local separator X with $|X| \leq 2$ and $|\Gamma| > r$ $\Rightarrow \Gamma \cong C_i \times C_j$ for some i > r and $j \in \{1, 2\}$.

Proof (continued). Case |X| = 2: WLOG $X = \{\mathbb{I}, h\}$.

Assume for now that $h \in S$.

Subcase $h^2 \neq \mathbb{I}$: We show $S \subseteq \{h^{\pm 1}, h^{\pm 2}\}$.



 $\Rightarrow \Gamma \cong C_i \times C_j$ for some i > r and $j \in \{1, 2\}$.

Proof (continued). Case |X| = 2: WLOG $X = \{\mathbb{I}, h\}$.

Assume for now that $h \in S$.

<u>Subcase $h^2 = \mathbb{I}$ </u>: We show that $\langle h \rangle$ is a normal subgroup of Γ .

Obtain G' from G by contracting all h-labelled edges.

G' is a Cayley graph of $\Gamma/\langle h \rangle$ with local cutvertex X.

So G' and $\Gamma/\langle h \rangle$ are cyclic by Case |X| = 1.

Thus $\Gamma \cong C_i \times C_2$ with i > r.

 $\Rightarrow \Gamma \cong C_i \times C_j$ for some i > r and $j \in \{1, 2\}$.

Proof (continued). Case |X| = 2: WLOG $X = \{\mathbb{I}, h\}$.

Assume for now that $h \in S$.

We cannot be greedy and add h to S.

Theorem (Tutte 60s): Every 2-connected graph is

3-connected,

has a 2-separation that is nested with all 2-separations, or

is a cycle.

 $\Rightarrow \Gamma \cong C_i \times C_j$ for some i > r and $j \in \{1, 2\}$.

Proof (continued). Case |X| = 2: WLOG $X = \{\mathbb{I}, h\}$.

Assume for now that $h \in S$.

We cannot be greedy and add h to S.

Theorem (Carmesin '20): Every *r*-locally 2-connected graph is

- r-locally 3-connected,
- has an *r*-local 2-separation that is nested with all *r*-local 2-separations, or
- ▶ is a cycle of length $\leq r$.

Choose X nested with all r-local 2-separations, **then** add h to S.

Outlook

Open problem: Extension to solvable groups (and beyond).

Open problem: Extension to (local) separators of size > 2.

Big question: What types of products will occur?

Main result. Let Γ be a finite group that is nilpotent of class $\leq n$. Let $r \geq \max\{4^{n+1}, 20\}$. Then TFAE:

- 1. The *r*-local covering of some Cayley graph G of Γ has ≥ 2 ends that are separated by ≤ 2 vertices.
- 2. G has an r-local separator of size ≤ 2 and $|\Gamma| > r$.

3.
$$\Gamma \cong C_i \times C_j$$
 for some $i > r$ and $j \in \{1, 2\}$.

Open: (1) Solvable groups. (2) Large local separators.

arXiv:2403.07776 jan-kurkofka.eu

Thank you!