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Theorem (Stallings).
TFAE for every group I' with finite generating set S:
» Cay(I',S) has > 2 ends;
» ' decomposes as a non-trivial amalgamated free product or
HNN-extension over a finite subgroup.
(This is independent of S.)

end of a graph: equivalence class of one-way infinite paths w.r.t. the

relation ‘not separable by finitely many vertices’



Open problem: Extend Stallings’ theorem to finite groups.

Challenges:
1. Ends have no finite counterparts

2. Key step of the proof fails for finite I"



v

X C V(G) is separator if G — X has > 2 components
separation of G: pair (A, B) with AU B = V(G) and

AN B # () # B~ A but without (A~ B)—(B ~\ A) edges
AN B is the separator of (A, B)

(A,B)<(C,D): = ACCand B2 D
(A, B) and (C, D) are nested if (A, B) < (C, D) possibly after
switching roles of A, B or of C, D; otherwise they cross

a set of separations is nested if its elements are pairwise nested
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Recent development in Graph Minor Theory:
local separators
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Rough idea: vertex-sets that separate G locally in a ball of given

radius, not necessarily GG itself



Given G, r > 0 and X C V(G).

Two edges e, f € 0X lie in the same r-local component at X if
» there are a cycle O C G of length < r, and
» a subpath P of O that starts with e and ends with f,

» such that P only meets X in its endvertices.

We allow P = O.

3<r<12



Two vertices of X lie in the same r-local atom of X if
» they lie together on a cycle of length < r, or
» are joined by an edge.

Call X r-locally atomic, or r-tomic, if X consists of one r-tom.

Example of not r-tomic:




X is an r-local separator if
» there are least two r-local components at X, and

» X is r-tomic.

An r-local separation is a triple (E, X, F') where
» X is an r-local separator, and

» FE. I bipartition X while respecting r-local components.




A covering of GG is a surjective graph-homomorphism
p: C'— G such that for every vertex v € C:

> p restricts to a bijection dx(v) — dg(p(v)).

Example: universal coverings are trees. l

DO

The ball Be(v,r/2) of radius r/2 around v € V(G) consists of all

vertices and edges that lie on closed walks of length < r through v.



VG and r > 0 there is a unique r-local covering p,: G, — G s.t.

1. p, restricts to an isomorphism Bg, (v,7/2) — Bg(p.(v),7/2)
for every v € V(G,), and

2. p, is ‘nearest’ to the universal covering with (1).

@ G, for r=14 ﬁ

P

r>|Gl =G, =G
r < 3 = G, = universal






separations of G, = lifts of r-local separations of G (roughly)
Two r-local separations of GG are nested if all their lifts are nested.

Ideas @challenges for finite I':

1. Use ends of r-local covering of some Cay(I",S).

2. Use I'-orbit of suitable r-local separation in proof.




Main result (Carmesin, Kontogeorgiou, K., Turner '24)

Let I' be a finite group that is nilpotent of class < n
Let r > max{4™*! 20}. Then TFAE:

1. The r-local covering of some Cayley graph G of I' has >
that are separated by < 2 vertices.

2. G has an r-local separator of size < 2 and |I'| > r.

3. '=(C; x C; for some i > rand j € {1,2}.

Questions:
» Why nilpotent?

» Why only (local) separators of size < 27

2 ends



Why nilpotent?

(1) and (2) hold for r < 9.
(3) cannot be amended (Aj; is simple).

Open problem (in reach): Extend main result to solvable groups.



Why only (local) separators of size < 27

Heavily exploited in proof. ..



G has r-local separator X with |X| < 2 and || > r
= I'=(C; x C; for some i > r and j € {1,2}.

Proof. Say G = Cay(I', 5).

Case | X| = 1: We claim S = {s*'} (so G is a cycle).

Suppose for a contradiction that {s*'} C S.

It suffices to show that B(I,7/2) — I is connected.

We show that every g*! # h*! € S lie in the same component.

lg, h], = I = short closed walk == short cycle O.
( lg,hly :==gh tg 'h and [g, h), := [g, |9, h]n_1]1 after reduction)

At least three of the words gh, g~'h, gh™!, hg occur on O
(we may use both directions of O to find words). &



G has r-local separator X with | X| < 2 and || > r
= I'=C; x C; for some i > r and j € {1,2}.

Proof (continued). Case |X|=2: WLOG X = {I, h}.
Assume for now that h € S.

Subcase h? # I: We show S C {h*! h*?}.




G has r-local separator X with |X| < 2 and || > r

= I'=(C; x C; for some i > r and j € {1,2}.

Proof (continued). Case |X|=2: WLOG X = {I, h}.
Assume for now that h € S.

Subcase h? = I: We show that (h) is a normal subgroup of T.

Obtain G’ from G by contracting all h-labelled edges.
G" is a Cayley graph of I'/(h) with local cutvertex X.
So G’ and I'/(h) are cyclic by Case | X| = 1.

Thus I' =2 C; x Cy with 7 > 7.



G has r-local separator X with |X| < 2 and || > r

= I'=(C; x C; for some i > r and j € {1,2}.

Proof (continued). Case |X|=2: WLOG X = {I, h}.
Assume for now that h € S.
We cannot be greedy and add h to S.

Theorem (Tutte 60s): Every 2-connected graph is

» 3-connected,

» has a 2-separation that is nested with all 2-separations, or

» is a cycle.



G has r-local separator X with |X| < 2 and || > r
= I'=(C; x C; for some i > r and j € {1,2}.

Proof (continued). Case |X|=2: WLOG X = {I, h}.
Assume for now that h € S.
We cannot be greedy and add h to S.

Theorem (Carmesin "20): Every r-locally 2-connected graph is
» r-locally 3-connected,

» has an r-local 2-separation that is nested with all r-local

2-separations, or

» is a cycle of length < r.

Choose X nested with all r-local 2-separations, then add h to S.

O



Outlook
Open problem: Extension to solvable groups (and beyond).
Open problem: Extension to (local) separators of size > 2.

Big question: What types of products will occur?



Main result. Let I' be a finite group that is nilpotent of class < n.
Let r > max{4""! 20}. Then TFAE:

1. The r-local covering of some Cayley graph GG of I" has > 2 ends
that are separated by < 2 vertices.

2. G has an r-local separator of size < 2 and |I'| > r.

3. '=(C; x C; for some i > r and j € {1,2}.

Open: (1) Solvable groups. (2) Large local separators.
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