Canonical decompositions of 3-connected graphs

Joint work with Johannes Carmesin

University of Birmingham

FOCS 2023

Decomposing G along a k-separator:

k = 1:

k = 2:

k = 2:

k = 2:

Two k-separators cross if they separate each other; otherwise they are *nested*.

Two *k*-separators *cross* if they separate each other; otherwise they are *nested*.

A k-separator is totally-nested if it is nested with every k-separator.

Two k-separators cross if they separate each other; otherwise they are *nested*.

A *k*-separator is *totally-nested* if it is nested with every *k*-separator.

Theorem (Tutte 66), SPQR-trees

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and $K_3{\rm 's.}$

Theorem (Tutte 66), SPQR-trees

3-con'd, >4 vertices, every 3-separator has form

separator of $\{A, B\}$: $(A \cap B) \cup E(A \smallsetminus B, B \smallsetminus A)$

 $\begin{array}{ll} \textit{tri-separation of } G \colon & \mathsf{mixed-sep'n} \ \{A,B\} \ \mathsf{with} \ |\mathsf{sep'r}| = 3 \\ & \mathsf{and} \ \mathsf{every} \ \mathsf{vx} \ \mathsf{in} \ A \cap B \ \mathsf{has two} \ \mathsf{neighb's} \\ & \mathsf{in} \ G[A] \ \mathsf{and} \ \mathsf{in} \ G[B] \end{array}$

- mixed-separation of G: $\{A, B\}$ with $A \cup B = V(G)$ and both $A \smallsetminus B$ and $B \smallsetminus A$ nonempty
 - separator of $\{A, B\}$: $(A \cap B) \cup E(A \smallsetminus B, B \smallsetminus A)$
 - $\begin{array}{ll} \textit{tri-separation of } G \colon & \mathsf{mixed-sep'n} \ \{A,B\} \ \mathsf{with} \ |\mathsf{sep'r}| = 3 \\ & \mathsf{and} \ \mathsf{every} \ \mathsf{vx} \ \mathsf{in} \ A \cap B \ \mathsf{has} \ \mathsf{two} \ \mathsf{neighb's} \\ & \mathsf{in} \ G[A] \ \mathsf{and} \ \mathsf{in} \ G[B] \end{array}$

separator of $\{A, B\}$: $(A \cap B) \cup E(A \smallsetminus B, B \smallsetminus A)$

 $\begin{array}{ll} \textit{tri-separation of } G : & \mathsf{mixed-sep'n } \{A,B\} \; \mathsf{with} \; |\mathsf{sep'r}| = 3 \\ & \mathsf{and \; every \; vx \; in } \; A \cap B \; \mathsf{has \; two \; neighb's} \\ & \mathsf{in } \; G[A] \; \mathsf{and \; in } \; G[B] \end{array}$

separator of $\{A, B\}$: $(A \cap B) \cup E(A \smallsetminus B, B \smallsetminus A)$

 $\begin{array}{ll} \textit{tri-separation of } G : & \mathsf{mixed-sep'n } \{A,B\} \; \mathsf{with} \; |\mathsf{sep'r}| = 3 \\ & \mathsf{and \; every \; vx \; in } \; A \cap B \; \mathsf{has \; two \; neighb's} \\ & \mathsf{in } \; G[A] \; \mathsf{and \; in } \; G[B] \end{array}$

separator of $\{A, B\}$: $(A \cap B) \cup E(A \smallsetminus B, B \smallsetminus A)$

 $\begin{array}{ll} \textit{tri-separation of } G : & \mathsf{mixed-sep'n } \{A,B\} \; \mathsf{with} \; |\mathsf{sep'r}| = 3 \\ & \mathsf{and \; every \; vx \; in } \; A \cap B \; \mathsf{has \; two \; neighb's} \\ & \mathsf{in } \; G[A] \; \mathsf{and \; in } \; G[B] \end{array}$

Decomposing along a tri-separation

Main result (Carmesin & K. 23)

Every 3-con'd G decomposes along its totally-nested nontrivial tri-separations into minors of G that are

• quasi 4-con'd

	Grohe 16	Carmesin & K. 23
method	recursive	Tutte (totally nested)
decomposition	3-separations	tri-separations
torsos	K_4 ,	wheels,
	quasi 4-con'd, K_3	quasi 4-con'd, thickened $K_{3,m}$
canonical	no	yes
algorithm	$O(n^2(n+m))$???

Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 23+) \exists FPT-algorithm with runtime $C(\ell) \cdot \operatorname{Poly}(|V(G)|)$ and Input: Graph $G, \ \ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$ Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 23+) \exists FPT-algorithm with runtime $C(\ell) \cdot \operatorname{Poly}(|V(G)|)$ and Input: Graph $G, \ \ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$ Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd Open: Extend the main result to k-separations for $k \ge 4$.

- Open: Efficient algorithms?
- Open: Directed graphs?

k = 1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23 $k \ge 2$: ???

Open: Extend the main result to k-separations for $k \ge 4$.

- Open: Efficient algorithms?
- Open: Directed graphs?

k=1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23 $k\geqslant 2:$ $\ref{eq:k}$

Thank you!