Canonical decompositions of 3-connected graphs

Joint work with Johannes Carmesin
University of Birmingham
FOCS 2023

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.

Decomposing G along a k-separator:

Problem: Decompose k-con'd G along k-separators into pieces that are ($k+1$)-con'd or 'basic'.
$k=1:$

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.
$k=2$.

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.
$k=2$.

Problem: Decompose k-con'd G along k-separators into pieces that are $(k+1)$-con'd or 'basic'.
$k=2$.

Two k-separators cross if they separate each other; otherwise they are nested.

Two k-separators cross if they separate each other; otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.

Two k-separators cross if they separate each other; otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.

Theorem (Tutte 66), SPQR-trees
Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_{2} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Theorem (Tutte 66), SPQR-trees
Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_{2} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess
Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.
\downarrow
3-con'd, >4 vertices, every 3-separator has form

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_{3} 's.

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and both $A \backslash B$ and $B \backslash A$ nonempty
separator of $\{A, B\}: \quad(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $\mid=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and both $A \backslash B$ and $B \backslash A$ nonempty
separator of $\{A, B\}: \quad(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $\mid=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and both $A \backslash B$ and $B \backslash A$ nonempty
separator of $\{A, B\}: \quad(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and both $A \backslash B$ and $B \backslash A$ nonempty
separator of $\{A, B\}: \quad(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $\mid=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$

mixed-separation of $G: \quad\{A, B\}$ with $A \cup B=V(G)$ and both $A \backslash B$ and $B \backslash A$ nonempty
separator of $\{A, B\}: \quad(A \cap B) \cup E(A \backslash B, B \backslash A)$
tri-separation of G : mixed-sep'n $\{A, B\}$ with \mid sep'r| $\mid=3$ and every vx in $A \cap B$ has two neighb's in $G[A]$ and in $G[B]$
totally-nested nontrivial tri-separations

totally-nested nontrivial tri-separations

none
totally-nested nontrivial tri-separations

none
totally-nested nontrivial tri-separations

none
totally-nested nontrivial tri-separations

none

totally-nested nontrivial tri-separations

none

Decomposing along a tri-separation

Main result (Carmesin \& K. 23)

Every 3-con'd G decomposes along its totally-nested nontrivial tri-separations into minors of G that are

- quasi 4 -con'd
- wheels
- thickened $K_{3, m}$

or $G=K_{3, m}(m \geqslant 0)$.

3
m

	Grohe 16	Carmesin \& K. 23
method	recursive	Tutte (totally nested)
decomposition	3-separations	tri-separations
torsos	K_{4},	wheels,
	quasi 4-con'd, K_{3}	quasi 4-con'd, thickened $K_{3, m}$
canonical	no	yes
algorithm	$O\left(n^{2}(n+m)\right)$???

Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin \& Sridharan 23+)
\exists FPT-algorithm with runtime $C(\ell) \cdot \operatorname{Poly}(|V(G)|)$ and
Input: $\quad G r a p h ~ G, \ell \in \mathbb{N}$ and $F \subseteq E(\bar{G})$
Output: \quad No, or $\leqslant \ell$-sized $X \subseteq F$ such that $G+X$ is 4 -con'd

Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin \& Sridharan 23+)
\exists FPT-algorithm with runtime $C(\ell) \cdot \operatorname{Poly}(|V(G)|)$ and
Input: $\quad G r a p h ~ G, \ell \in \mathbb{N}$ and $F \subseteq E(\bar{G})$
Output: \quad No, or $\leqslant \ell$-sized $X \subseteq F$ such that $G+X$ is 4 -con'd

Open: Extend the main result to k-separations for $k \geqslant 4$.

Open: Efficient algorithms?
Open: Directed graphs?
$k=1$: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23
$k \geqslant 2$: ???

Open: Extend the main result to k-separations for $k \geqslant 4$.

Open: Efficient algorithms?
Open: Directed graphs?
$k=1$: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23 $k \geqslant 2$: ???

Thank you!

