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Maths!



Which graphs can be drawn in the plane so that no two edges cross︸ ︷︷ ︸
are planar

?
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Euler’s formula (1752)

For every planar drawing of a connected graph with n vertices and m edges:

n−m+ ℓ = 2

where ℓ is the number of faces of the drawing.

faces : connected regions of the plane minus the drawing

n = 4

m = 6

ℓ = 4
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Corollary A. Every triangulation of the plane with n vertices has 3n− 6 edges.

Corollary B. K5 is not planar.

Proof.

Assume for a contradiction that K5 is planar.

Draw it! Without proof: every face is bounded by a cycle

This is a triangulation:
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Is the right graph planar?

Does the right graph contain K5 as a subgraph?



A graph H is a minor of a graph G if H can be obtained from G by

successively deleting edges or isolated vertices or contracting edges.

Fact. Minors of planar graphs are planar.

Conjecture. Every nonplanar graph contains K5 as a minor.
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Kuratowski’s theorem (1930)

For every graph G, the following assertions are equivalent:

• G is planar;

• G contains neither K5 nor K3,3 as a minor.

K5 K3,3





Is there a Kuratowski-type theorem for the torus?
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Are there Kuratowski-type theorems for other surfaces?



Conjecture (allegedly Wagner, 1960s)

For every graph-property P that is closed under taking minors

(e.g. being planar or admitting a drawing on )

there exist finitely many graphs X1, . . . , Xk such that the following assertions

are equivalent:

• G exhibits the property P ;

• G contains none of the graphs X1, . . . , Xk as a minor.
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Corollary. For every minor-closed graph-property there exists an efficient (cubic

time) algorithm for testing whether a given graph exhibits the property.
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